If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-52x+196=0
a = 1; b = -52; c = +196;
Δ = b2-4ac
Δ = -522-4·1·196
Δ = 1920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1920}=\sqrt{64*30}=\sqrt{64}*\sqrt{30}=8\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-52)-8\sqrt{30}}{2*1}=\frac{52-8\sqrt{30}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-52)+8\sqrt{30}}{2*1}=\frac{52+8\sqrt{30}}{2} $
| w/3-13=22 | | 7(x+6)=7x-9 | | 7(x+6)=7x+9 | | (2x–1)(x+5)=0 | | 19=x/4+10 | | 50000=26000+0.07(x) | | 5x+8=77 | | 5x²-35x=0 | | 8m+12/2=19 | | P-4/8=2p | | 8=5(p-4) | | 2/3(y-12)=18 | | 1/3(x-8)=18 | | 20/9q=40 | | 3k+18=0 | | 0,12x=9 | | 0,13x=9 | | 15-27x²=3 | | 2y-1=25 | | x3+19x2−144x−2736=0 | | 15b–32+b= | | 15b–32+b=0 | | 6n-3n×2n+n=0 | | .7x=2500 | | 2•b+(b+3)=30 | | x^2=2,87 | | (Q-7)x6=18 | | x-2/x+1=1/2 | | X3-x2=-22 | | 2y+3/7+y-1/3=3y-2 | | X+(x3)=11 | | y=2/3-16=8 |